2013 Charleston Swallowing Conference

Session 18
Stable And Progressive Pediatric Neurological Disorders
1:30 – 3:00 pm
Saturday, Oct. 12, 2013

Authors:
Bowman, Kinsman, McGhee, McGrattan

Providing Quality Affordable Continuing Education and Treatment Materials for over 30 years.

© 2013 Northern Speech Services, Inc.
2013 Charleston Swallowing Conference
Lung / Swallowing Issues in Children with Neuromuscular Problems

C. Michael Bowman, PhD, MD
Director, Pediatric Pulmonary and Sleep Medicine
Medical University of South Carolina
Children’s Hospital of South Carolina

Faculty disclosures & focus
• I am a full-time faculty member at MUSC and have no conflicts of interest of any kind to disclose.
• No treatments will be discussed off-label without notice.
• This is intended to be a practical clinical discussion from a pediatric pulmonary perspective, with time for questions. It is being given as part of a multi-disciplinary workshop, so it is limited in scope / perspective.
• I apologize in advance for any errors or imprecise use of swallowing terms such as dysphagia or incoordination that I may use.

Learning objectives
After this session, learners will be able to:
• Recognize neuromuscular problems that may affect aspiration risk and severity.
• Recognize the progression of pulmonary symptoms in children with neuromuscular impairment,
• Identify outcomes of weakness with aspiration,
• Understand the importance of cough and chest symmetry in lung protection, and
• Enumerate key aspects of therapy for a child with neuromuscular issues and aspiration.
Why is this important?
- Demonstration of respiratory compromise in children requires muscle strength
 - Tachypnea, respiratory effort, retractions, distress
- Cough is extremely important for lung protection
- Children with neuromuscular impairment “fool us” about the severity of their respiratory problems and often can’t adequately protect their lungs
- Non-verbal children can’t express distress
- Must anticipate problems and coach families about recognition and prevention
- Pneumonia is a common cause of death

Who are we talking about?
- Children with neuromuscular issues
- Static or progressive
- Cerebral palsy and related problems
- Mitochondrial diseases
- Muscular dystrophies
- Spinal muscular atrophy
- Also applies to many other children
- Chronic care; children of varying ages
- Wide spectrum of manifestations

Airway protection
- GI and respiratory tracts have common origin, easy to aspirate
- Careful coordination to allow breathing and eating / drinking at the same time
- Poor coordination early in life and with muscle weakness; GE reflux concerning
- “Everyone aspirates” – substance, amount, and frequency influence severity
- Pulmonary protection – apnea, cough
Neurodevelopmental impairment
• Tachypnea; anatomical problems (e.g., choanal atresia, cleft palate); acute problems (e.g., bronchiolitis); chronic problems
• Loss of consciousness; seizures
• Swallowing coordination and success – textures, volume, rate of feeding
• Distraction / startle
• Sleep
• Weakness of pharyngeal muscles

Acute cough with clearance (or not)
• Airway inflammation > mucus production
• Bronchospasm (acute, chronic)
• Tachypnea; hypoxia – if marginal
• Bronchitis > pneumonia > atelectasis > bronchiectasis > fibrosis
• Everything is additive (amount, frequency)
• Goal is to minimize injury and maximize healing; importance of cough / airway clearance

Drooling as a sign of poor swallowing
• Bronchoscopy shows that such children are breathing in and out through a puddle of saliva
• Sialorrhea – how many bibs a day?
• Potential therapies to decrease salivary volume
• Impact of a g-tube bypassing pharynx
• Impact of a tracheostomy – not "sucking in" pharyngeal secretions with every breath, but liquid can drip through vocal cords.
Aspiration of noxious materials

- Saliva
- Saliva + increased bacteria (poor oral hygiene)
- Milk / formula
- Solid food
- Stomach acid
- Gastric contents (marked risk if massive amount)
- Foreign bodies (may be startle)

Common impairments

- Hypotonia of upper airway
- Obesity (no activity, parental guilt, etc.)
- Upper airway resistance vs. respiratory muscle strength (variable among diseases)
- Non-compliant / stiff chest and lungs
- Hypoventilation, especially with sleep
- GE reflux > upper airway inflammation
- Scoliosis may limit position changes; worsen cough effectiveness
- Can progress to pulmonary hypertension and even death

Management

- Minimize aspiration – from above and below;
- Promote airway clearance – chest physiotherapy (CPT); cough assist device; chest compression vest; bronchodilators
- Avoid insults – individual; seasonal; vaccines
- Minimize lung dysfunction
 - Antibiotics – acute or chronic (enteral, inhaled)
 - Mucolytics – hypertonic saline, domase alfa; N-acetyl cysteine
 - Anti-inflammatories – inhaled corticosteroids
- Anticipate, diagnose and treat respiratory failure
 - Blood gases; respiratory muscle strength
 - O2; CPAP / BiPAP / ventilation
Diagnostic evaluations

- Chest films -- scattered infiltrates; peri-bronchial cuffing; no reliable location
- Timing of episode(s) – changes can be delayed
- CT scans -- scattered (dependent) infiltrates may be more obvious
- BAL – lipid laden macrophages (not specific)
- Cultures – oral flora, anaerobes
- Pulmonary Function Testing (PFTs) – restriction, bronchospasm, muscle weakness – evolution over time
- Sleep studies – most critical time!

Diagnostic evaluations, II

- Swallowing -- observation by speech pathologist
 - Multi-texture modified barium swallow
- Gastroesophageal reflux
 - Multi-channel impedance probe study – include diary of events
- UGI used to evaluate anatomy – not function – limited time of observation
- Gastric emptying (additive problem to reflux)
- Radionuclide scans for lung deposition
- Blood gases, especially PCO₂ and base excess
- Gastric pH measurements

Take-home messages

- Aspiration is common in patients with nm issues;
- Cough is crucial for airway protection;
- Respiratory symptoms require muscle strength for recognition and assessment;
- Recurrent aspiration leads to parenchymal lung damage, hypoxemia, restrictive changes;
- Progressive muscle deterioration leads to weak cough, hypoventilation and respiratory failure;
- Mechanical airway clearance and non-invasive ventilation treatments are often helpful;
- Lung insults are additive and progressive.
References

References, II

Neurology of Pediatric Swallowing Disorders

Stephen Kinsman, MD
Pediatric Neurology
MUSC

Disclosures

- None

Issues to consider

- Localization
- Etiology/Time course
- Team functions
- Risk factors
- Assessments
- Treatments
- WHO disability model
- Family-centered care
Localization

- Anatomy
- History
- Examination
- Imaging
- Electrophysiology
- Other studies

Cranial Nerves

Central Pattern Generator of Swallowing
Motor Cortex Reorganization after Stroke

CNS - Acute

- Acute
 - Hypoxic-ischemic encephalopathy
 - Cerebral infarctions
 - Intracranial Hemorrhage
 - Infections (meningitis, encephalitis, poliomyelitis, botulism, syphilis)
 - Acute bilirubin encephalopathy
 - Metabolic encephalopathies
 - Neonatal withdrawal syndrome
 - Trauma
 - Brain and brainstem
 - Upper cervical cord

CNS – Chronic Progressive

- Chiari malformation and/or syringobulbia
- Intracranial malignancies
- Degenerative diseases
 - White matter (Metachromatic Leukodystrophy, Adrenoleukodystrophy, Krabbe)
 - Grey matter (Leukodystrophy, Tay-Sachs, Mucopolysaccharidoses)
- Mitochondrial Disorders
- Peroxisomal Disorders (Zellweger)
- Purine and pyrimidine disorders (Lesch-Nyhan)
- Disorders of copper metabolism (Wilson disease, Menkes disease)
- Spinocerebellar disorders
- Ataxia-Telangiectasia
- The Dystonias
- Multiple sclerosis
- Amyotrophic Lateral Sclerosis
- HIV encephalopathy
CNS – Chronic Static

- Genetic Syndromes
 - Velocarofacial
 - Smith-Lemli-Opitz
 - Prader-Willi
 - Trisomy 21
 - Rett syndrome
- Cerebral palsy
- Chronic bilirubin encephalopathy
- Congenital brain malformations
- Mobius syndrome
- Familial dysautonomia (Riley-Day syndrome)

PNS - Acute

- Acute inflammatory polyradiculopathy
- Hypermagnesemia
- Polymyositis
- Dermatomyositis

PNS – Chronic Progressive

- Spinal Muscular Atrophies
- Polyneuropathies
- Myasthenia Gravis
- Metabolic myopathies
 - Glycogen storage disease
 - Mitochondrial disorders
- Muscular dystrophies
PNS – Chronic Static

- Polyneuropathies
- Congenital myopathies (nemaline rod)
- Myotonic dystrophy
- Congenital muscular dystrophy
- Infantile fascioscapulohumeral dystrophy

Table 1: Definition of the neuroaxis exclusive neuroimaging findings categories

<table>
<thead>
<tr>
<th>Neuroaxis</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brainstem</td>
<td>Abnormal or absent neural stem structure, including bulbar areflexia and altered cranial nerve function</td>
</tr>
<tr>
<td>Spinal cord</td>
<td>Abnormal or absent neural stem structure, including areflexia and altered cranial nerve function</td>
</tr>
<tr>
<td>Basal ganglia</td>
<td>Abnormal or absent neural stem structure, including areflexia and altered cranial nerve function</td>
</tr>
<tr>
<td>Central nervous system</td>
<td>Abnormal or absent neural stem structure, including areflexia and altered cranial nerve function</td>
</tr>
</tbody>
</table>

Table 1: Feasible feeding problems in children with genetic syndromes

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysphagia</td>
</tr>
<tr>
<td>Motor weakness</td>
</tr>
<tr>
<td>Taste disturbance</td>
</tr>
<tr>
<td>Abnormal sensory function</td>
</tr>
<tr>
<td>Weight loss</td>
</tr>
<tr>
<td>Upper airway obstruction</td>
</tr>
</tbody>
</table>

© 2013 Northern Speech Services, Inc.
2013 Charleston Swallowing Conference
Conclusions

- Dysphagia is common in Pediatric Neurological conditions of both the CNS and PNS
- Proactivity and family education is critical
- Multidisciplinary care is the cornerstone.
- Trajectory thinking about conditions like cerebral palsy can help providers with family education and anticipatory guidance
- A nutritional focus is as important as a safety focus and key in maintaining a family-centered approach
Management of Pediatric Neurogenic Dysphagia

Pathology • Presentation • Treatment

Charleston Swallowing Conference
October 12, 2013
Michael Bowman, MD Pulmonology
Steven Kinsman, MD Neurology
Katlyn McGrattan, MS, CCC-SLP
Heather McGhee, MS, CCC-SLP

Support and Disclosures

Grants and Research Support
- NIH NIDCD RO1/DC011290 Standardization of Videofluoroscopic Swallow Studies for Bottle-Fed Children, 2010-2015

Other Support
- Northern Speech Services, Standardizing the MBSS. http://www.northernspeech.com/MBSSimP
- Mark and Evelyn Trammell Voice and Swallowing Trust

Introduction

Management of dysphagia in the pediatric neurogenic population is arguably the most difficult population to serve.
Oral Domain

Bolus Preparation

Physiologic Impairment
- Impaired rotary mastication
- Imprecise lingual manipulation

Functional Impairment
- Reduced bolus mastication
- Incomplete bolus formation
- Risk of airway occlusion from laryngeal bolus entry

Oral Domain

Soft Palate Depression/Elevation

Physiologic Impairment
- Incomplete SP to TB seal
- Incomplete velopharyngeal closure

Functional Impairment
- Reduced suction for bolus expression
- Posterior bolus escape
- Nasopharyngeal regurgitation
- Reduced pharyngeal bolus propulsion

Oral Domain

Lip Closure

Physiologic Impairment

Functional Impairment

Pharyngeal Domain

Bolus Preparation

Functional Impairment

Soft Palate Depression/Elevation

Physiologic Impairment

Esophageal Domain

Physiologic Impairment

Functional Impairment

Laryngeal Vestibular Closure

Pharyngeal Contraction

Pharyngoesophageal Segment Opening

Esophageal Clearance

Oral Domain
Initiation of Pharyngeal Swallow

Physiologic Impairment
- Delay in swallow initiation

Functional Impairment
- Pharyngeal bolus entry prior to laryngeal closure
- Laryngeal bolus entry before/during the swallow

Pharyngeal Domain
Pharyngeal Stripping Wave

Physiologic Impairment
- Reduced strength, displacement, and stripping during pharyngeal contraction

Functional Impairment
- Reduced esophageal bolus propulsion
- Pharyngeal residue following the swallow
- Laryngeal bolus entry following the swallow

Pharyngeal Domain
Laryngeal Elevation
Anterior Hyoid Excursion

Physiologic Impairment
- Reduced trajectory of motion and duration of elevation

Functional Impairment
- Incomplete laryngeal closure
- Laryngeal bolus entry during the swallow
- Incomplete duration and extent of PES opening
Pharyngeal Domain
Pharyngoesophageal Segment Opening

Physiologic Impairment
- Reduced extent of opening
- Reduced duration of opening

Functional Impairment
- Incomplete bolus passage into the esophagus
- Pharyngeal residue
- Laryngeal bolus entry following the swallow

EFFECTIVENESS OF TREATMENT

- Only three studies met inclusion criteria
 - Randomized controlled trial
 - Ages 0-18 with dysphagia of acquired, developmental, degenerative or genetic origin
 - Direct and indirect interventions targeting impairment, activity/participation level and environmental factors
 - Primary outcomes: physiological function, pulmonary status, diet consistency
 - Secondary outcomes: changes in growth, level of participation, caregiver stress

TREATMENT PARADIGM

- Identify physiological impairment
- Target intervention
- Set measurable objectives
- Ongoing assessment
- Team collaboration
PHYSIOLOGIC IMPAIRMENT

- ORAL Impairment
 - Poor lip closure
 - Poor lingual control
 - Weak suck
 - Poor mastication
 - Delayed initiation of swallow
- PHARYNGEAL Impairment
 - Reduced soft palate elevation
 - Reduced hyolaryngeal elevation and excursion
 - Reduced pharyngeal stripping wave
 - Reduced tongue base retraction
 - Reduced pharyngoesophageal segment opening

TYPES OF INTERVENTION

- Direct
 - Involving use of food/liquid during swallowing tasks
- Indirect
 - Motor/sensory/pharmacological interventions
 without the use of food/liquid
- Compensatory
 - Altering environmental restrictions, improving participation

(From World Health Organization, 2001)

Treatment:

NEUROLOGICAL DISORDERS

- Considerations when determining treatment plan
 - Static v progressive
 - Caregiver goals
 - Overt v silent aspiration
 - Pulmonary implications
 - Anatomical changes
Treatment: STRATEGIES

ORAL domain
- Increased flow rate
- Reclined position for poor bolus transfer
- Straw drinking
- Bolus intervention (Lau, C., Smith, E.O.) - administration of a single bolus via syringe for premature infants with oropharyngeal impairment; may be done with a pacifier
- Pacing

Treatment: STRATEGIES

PHARYNGEAL domain
- Reclined position for pharyngeal weakness
- Increased bolus viscosity
- Alternating liquids/solids
- Thickened liquids
- Chin tuck
- Head turn
- Maneuvers

Treatment: OBJECTIVES

- Target physiological impairment
- Participation objectives
- Caregiver objectives
- Nutritional outcomes
ONGOING ASSESSMENT

- Set measurable objectives
- Assess treatment effectiveness on an ongoing basis
- Adjust objectives as needed

TEAM COLLABORATION

- Ability to meet nutritional needs
- Pulmonary status and implications
- Progression of neurological status
- Caregiver goals
- NPO status

PROGRESSIVE DISORDERS

- Consider the same variables, but often a more conservative approach due to the declining mechanism and risk for severe pulmonary implications
- Team collaboration is key
REFERENCES

